Growing Pacific oysters is a lucrative field, worth over a billion dollars in 2017. This means that there is a lot of pressure to constantly improve the quality and cost effectiveness of the product. But it’s not easy to produce high-quality animals because they have a genetic code that varies in between generations and individuals. This genetic variation persists even when Pacific oysters are grown in the same tank.
Oysters are a highly nutritious food and widely considered a delicacy, which explains their high demand and price. They are high in zinc and selenium, necessary minerals for life, and poly-unsaturated fatty acids, including the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These omega-3 fatty acids are known to have many health benefits from the brain to the heart. Oysters are also high in glycogen, an easily digestible molecule that can be broken down into glucose for energy.
Molecular breeding is a relatively new strategy for improving specific qualities of animals and plants. This involves breeding based on the genetic code instead of measurable traits. The first step in this is to build “maps” of the genomes, where scientists identify parts of the DNA that control the qualities that people want in a Pacific oyster. Doing so will allow farmers to breed individuals with the best versions of the genes.
To read the rest of the story, please go to: Sciworthy